
Hacking a Sega Whitestar Pinball

A guided tour through the peculiar design of a pinball machine

Pierre Surply

EPITA Systems/Security Laboratory (LSE)

1 Sega Starship Troopers Pinball Overview

The Sega Starship Troopers Pinball is fairly representative of the WhiteStar Board System used
in several Sega pinball games and Stern Pinball. This hardware architecture was firstly designed
in 1995 for the Apollo 13 game with the objective to be convenient and extensible in order to
be reusable for other playfields. This way, Sega could exploit a large number of licenses without
having to design new control circuits for each machine.

This architecture is based on three Motorola 68B09E clocked at 2MHz and used as main
CPU, display controller and sound controller. The two last are mainly dedicated to monitor
application-specific processors: for instance, the 6809 used on the display board is charged to
interface a 68B45 CRT controller to the main CPU. The sound processing is handled by a
BSMT2000, a custom masked-rom version of the TI TMS320C15 DSP.

Sega used this system for 16 other games including GoldenEye, Star Wars and Starship
Troopers.

1.1 Playfield’s wiring

The playfield wiring is quite simple: all switches are disposed in a matrix grid. This method
provides a simple way to handle a high number of I/O with a reasonable number of connectors.
So, in order to read the switches state, the CPU has to scan each raw of the matrix by grounding
it and watching in which column the current is flowing.

Fig. 1. Lamp wiring

A similar circuit is used to control playfield lamps: each raw has to be scanned by grounding
it and applying voltage on the column connector according to lamps that have to be switched
on the selected raw.

It’s truly easy to control a high number of lamps with this layout. The following code
switches on the lamp 31 (multiball).

lda #$8

sta LAMP_ROW ;; Ground selected row

clra

sta LAMP_AUX ;; Clear auxiliary rows

lda #$40

sta LAMP_COL ;; Drive selected column

Although playfield switches are handled by the matrix grid, some frequently used buttons are
connected to a dedicated connector. This allows the CPU to directly address this input without
having to scan the entire input matrix. These switches are user buttons and End-Of-Stroke.

The E.O.S switch prevents foldback when the player has the flipper energized to capture
balls. When the Game CPU detects that this switch is open, it stabilizes the position of the
selected flip by reducing the pulse applied to the coil.

1.2 The Backbox

The Backbox contains all the electronic circuits controlling playfield’s behaviour. We will focus
on this very part throughout this paper.

CPU/Sound Board

The main board contains the Game CPU and the Sound circuit. The switches are directly
connected to this board so that it is really simple for the CPU to fetch their values.

One of the main problems of this board is the battery location. Populated with a 3xAA
battery holder to keep the RAM content alive, alkaline batteries are located on top of the CPU,
ROM and RAM chip, which is critical when they will start to leak on this components. Before
I started playing with this machine, I spend hours restoring and cleaning the PCB because of
the corrosive leaking. To avoid deterioration, relocating this battery could be a smart idea.

2

Fig. 2. Flippers wiring

Fig. 3. CPU/Sound Board

Display Controller Board

Like many pinball machines from the 90s, the backbox is equipped with an old school dot matrix
display.

3

As the CPU Board, it is based on a Motorola 68B09E with a dedicated 512MB UVPROM
which contains the dot matrix display driver code and images that can be displayed on it. It
communicates with the main board via a specific protocol.

To interface the raster display, the board uses a Motorola 68B45 (68B45 CRTC for ‘cathode
ray tube controller’). Although this chip was primarily designed to control the CRT display, it
can also be used to generate correctly timed signal for a raster dot matrix display like in this
case.

I/O Power Driver Board

The IO Power Driver Board is an interface between the low current logic circuit and the high
current playfield circuit.

The first part of this circuit consists of converting the alternative current provided by the
transformer into exploitable direct current thanks to 5 bridges rectifiers.

The only electromagnetic relay is dedicated to the general illumination and is not controllable
via the main CPU. The rest is driven by MOSFET power transistors which are designed to be
able to handle high current in order to power playfield coils. Moreover, fuses are placed before
each bridges rectifiers in order to easily help identifying where the problem comes from in case
of failure.

Fig. 4. IO Board

2 Upgrading the firmware

The title screen displayed in the dot matrix plasma display indicates that the firmware’s version
is 2.00. However, an up-to-date image of this ROM exists in Internet Pinball Database which
seems to be on version 2.01 according to the ascii string located at offset $66D7. Let’s try to
upgrade the pinball!

An almost suitable flash memory to replace the original UVPROM is the A29040C. The only
mismatches on the pinout are the A18 and WE pins. This is a minor problem since I fixed the
PCB to match the A29040C layout.

4

http://www.ipdb.org/machine.cgi?id=4341

Fig. 5. IO Board Power supply

IC Name Type Board Name Loc.

Game ROM 1MB CPU / Sound Board U210
Voice ROM 1 4MB CPU / Sound Board U17
Voice ROM 2 4MB CPU / Sound Board U21
Voice ROM 3 4MB CPU / Sound Board U36
Voice ROM 4 Not Used CPU / Sound Board U37

Sound EPROM 512K CPU / Sound Board U7
Display EPROM 4MB Display Ctrl Board ROM 0
Display EPROM Not Used Display Ctrl Board ROM 3

Table 1. ROM Summary

Fig. 6. Pinout mismatch

Burning the A29040C with the new firmware requires a flash memory programmer. I decided
to craft one with an Arduino mega 1280 based on an AVR Atmega 1280 microcontroller. The
large number of IO of this chip is essential to complete the programming protocol of the A29040C.

After successfully programming the flash memory, I was pretty disappointed when I noticed
that the new ROM chip was still not working.

I thought that this UVPROM was able to store 512KB of data, just like A29040C. It took me
a while to realise that the game is a 128KB ROM although the chip is designed to be connected
to a 19 bit address bus. This means that the game’s ROM simply ignores the value of A17 and
A18 signals, which means that the game code is mirrored 4 times in the whole ROM address
space.

5

Fig. 7. Homemade Flash Programmer

Fig. 8. Mirroring

3 Building a custom ROM

Now that we are able to substitute the original ROM with a custom flash memory, let’s try to
run our own code on this machine.

The first thing that we have to do in this case is to determine where the CPU will fetch
its first instruction after a reset. According to the 6809 datasheet, the interrupt vector table
(which contents the address of the reset event handler) is located at 0xFFFE. However, this
offset refers to the CPU address space, not that of the ROM chip. So, after a reset, which part
of this memory is mapped at 0xFFFE?

To answer this, it’s essential to follow the address bus of the UVPROM. We then easily see
that bits 14 to 18 of this bus are connected to 5-bit register (U211) while bits 13 to 0 are directly
bound to CPU address bus.

This is a typical configuration to implement a bank system since the CPU address space is
too narrow to map the entire ROM. That’s why only one part of it (also called a *bank*) is
mapped at a given time. The mapped bank is chosen by the U211 register, called XA, and can
be easily wrote by the CPU when a bank switching is needed.

6

Fig. 9. Bank system

3.1 Finding address space

On this kind of device, it’s always painful to debug the code running directly on the board. The
only way to achieve it here is to trigger some visual element of the playfield in order to get a
basic tracing of the execution flow.

As there is no IO port on the 6809, all devices are memory-mapped. The question now is:
where are they located?

First, let’s focus on the address decoding circuit of the IO Board.

Fig. 10. IO Addressing

In order to simplify cascading, the 74138 multiplexer generates output only if the Boolean
expression G1 && !G2A && !G2B is true. So, in this circuit, U204 covers IO addresses from 0x0

to 0x7 and U205 handles from 0x8 to 0xF.
As we can see on this schematic, the question is: where does the IOSTB signal come from?
Following the wire, we can see that this control signal is generated by the CPU Board. It

actually acts as a *chip select*: it means that this signal is used to indicates to the IO Board
that we are addressing it.

To be more precise, the IOSTB is driven by the U213 chip, a PAL16L8 (Programmable Array
Logic). This kind of integrated circuit is used to implement combinatoric logic expressions. This
is widely used for address decoding.

7

Fig. 11. PAL16L8

Dumping the logical expression programmed on this chip is essential to determine the actual
CPU address space. One way to do it is to basically test all possible inputs and watch how
outputs evolves according to input values. However, some of the PAL16L8 pins can be considered
as inputs as well as outputs. In this case, we can guess that XA0, A9 and A10 are used as input
pins according to the rest of the circuit.

I desoldered the PAL, in order to prevent undesired side effect on the rest of the circuit, and
used a simple Arduino Uno to generate the truth tables of all outputs.

Fig. 12. Dumping the PAL16L8

Now, let’s extract irreducible logical expressions from the recorded truth tables. As a mat-
ter of fact, these truth tables are significantly too large to apply the well-known Karnaugh
map method to simplify the extended logical expression. This problem can be solved by using
the https://pypi.python.org/pypi/electruth. It fully implements the Quine-McCluskey method
which is perfectly suitable in this situation.

After a few hours of computation, I got these expressions, which are truly helpful in the
address space determination process:

GAL16V8

U213

8

A15 A14 A13 /E Q VMA RW A11 A12 GND

MPIN IOSTB XA0 SNDSTB A10 A9 IOPORT /RAMCS /ROMCS VCC

/ROMCS.T = A15 + A14 + IOPORT

/ROMCS.E = /E

RAMCS.T = A15 + A14 + A13 + A12 * A11 * A10 * A9 * /RW * /MPIN

/RAMCS.E = /E

IOPORT.T = A15 + A14 + /A13 + A12 + A11 + XA0

IOPORT.E = /E

IOSTB.T = /A15 * /A14 * A13 * /A11

IOSTB.E = /E

DESCRIPTION:

Sega Whitestar Pinball

U213 (Address space decoding)

Notice the MPIN input which is a signal generated by the cabinet door when it’s open. So,
the PAL restricts the access to a small part of the RAM when the coin door is closed. This
section is actually used to store game settings that are only editable for maintenance purpose.

Here is the address space that I was finally able to discover according to the actual wiring:

– 0000-1FFF : RAM

• 0000-1DFF : Read/Write Area

• 1E00-1FFF : Write Protected Area

– 2000-27FF : IO (IOBOARD)

• 2000 : HIGH CURRENT SOLENOIDS A

∗ bit 0 : Left Turbo Bumper

∗ bit 1 : Bottom Turbo Bumper

∗ bit 2 : Right Turbo Bumper

∗ bit 3 : Left Slingshot

∗ bit 4 : Right Singshot

∗ bit 5 : Mini Flipper

∗ bit 6 : Left Flipper

∗ bit 7 : Right Flipper

• 2001 : HIGH CURRENT SOLENOIDS B

∗ bit 0 : Trough Up-Kicker

∗ bit 1 : Auto Launch

∗ bit 2 : Vertical Up-Kicker

∗ bit 3 : Super Vertical Up-Kicker

∗ bit 4 : Left Magnet

∗ bit 5 : Right Magnet

∗ bit 6 : Brain Bug

∗ bit 7 : European Token Dispenser (not used)

• 2002 : LOW CURRENT SOLENOIDS

∗ bit 0 : Stepper Motor #1

∗ bit 1 : Stepper Motor #2

∗ bit 2 : Stepper Motor #3

∗ bit 3 : Stepper Motor #4

∗ bit 4 : not used

∗ bit 5 : not used

∗ bit 6 : Flash Brain Bug

∗ bit 7 : Option Coin Meter

9

• 2003 : FLASH LAMPS DRIVERS

∗ bit 0 : Flash Red

∗ bit 1 : Flash Yellow

∗ bit 2 : Flash Green

∗ bit 3 : Flash Blue

∗ bit 4 : Flash Multiball

∗ bit 5 : Flash Lt. Ramp

∗ bit 6 : Flash Rt. Ramp

∗ bit 7 : Flash Pops

• 2004 : N/A

• 2005 : N/A

• 2006 : AUX. OUT PORT (not used)

• 2007 : AUX. IN PORT (not used)

• 2008 : LAMP RETURNS

• 2009 : AUX. LAMPS

• 200A : LAMP DRIVERS

– 3000-37FF : IO (CPU/SOUND BOARD)

• 3000 : DEDICATED SWITCH IN

∗ bit 0 : Left Flipper Button

∗ bit 1 : Left Flipper End-of-Stroke

∗ bit 2 : Right Flipper Button

∗ bit 3 : Right Flipper End-of-Stroke

∗ bit 4 : Mini Flipper Button

∗ bit 5 : Red Button

∗ bit 6 : Green Button

∗ bit 7 : Black Button

• 3100 : DIP SWITCH

• 3200 : BANK SELECT

• 3300 : SWITCH MATRIX COLUMNS

• 3400 : SWITCH MATRIX ROWS

• 3500 : PLASMA IN

• 3600 : PLASMA OUT

• 3700 : PLASMA STATUS

– 4000-7FFF : ROM

– 8000-BFFF : ROM (Mirror)

– C000-FFFF : ROM (Mirror)

3.2 Handling reset circuitry

In this kind of real-time application, where a huge number of unpredictable events have to be
handled, the risk of race condition cannot be fully faded.

Although the software is designed to be able to face any situations, the hardware has to be
prepared to a faulty program. One of the simplest and more robust method is to use a watchdog
timer. This consists of an autonomous timer charged to trigger a reset signal to the system if
it reaches its initial point. The main idea here is to force the circuitry to be stopped if it does
not correctly respond in order to prevent any damage from uncontrolled behaviour.

In most cases, the timer has to be fed by the software running on the CPU. So, if we want
to run our own code on that machine, it’s essential to implement as a subroutine the reset of
the watchdog in order to stay alive.

10

In the Whitestar pinball, two distinct watchdogs have to be correctly handled. The first one
is located on the CPU/Sound Board and is directly connected to the reset pin of the 6809.
SEGA engineers chose to use a DS1232 chip (U210) which integrates all the features that are
commonly used to monitor a CPU. So, in addition to a regular watchdog timer, this chip also
provides a power monitoring and an external override which is actually designed to allow the
use of a push button to force the CPU reset (SW200).

As the TOL pin of this chip is grounded, the DS1232 continually watches the voltage applied
on Vcc pin and triggers a reset signal if its value is under 4.7V. From a software engineer point
of view, the important pin in that case is the strobe input (ST): it is used to reset the watchdog
timer when a falling edge is applied to it.

On the CPU/Sound Board, this pin is connected to either clock signal (generated by U2)
or BSEL signal according to the location of the jumper (Wx or Wy). As Wx was jumpered on
my board, we can assume that the configuration in which Wy is fit was used during firmware
development. So programmers were able to test their code without having to mind about the
watchdog reset: this was automatically done by the clock signal. When the pinball was about
to be released, calls to the watchdog reset subroutine were injected in appropriate parts of the
firmware and the jumper was moved from Wy to Wx.

In my opinion, modifying the hardware by desoldering the jumper and resoldering it on Wy

is a little bit too easy to solve this kind of problem. So, let’s try to handle the watchdog timer
with a suitable software subroutine.

The BSEL signal is generated when writing at address 0x3200 and is actually used as clock
signal for the bank selection (U211). This is a clever way to get a nonintrusive watchdog reset
subroutine: it’s, in fact, hooked on the bank switching mechanism. The hardware designers
probably thought it was a good idea to check the regularity of the code execution only by
testing a periodic bank switching. . .

In our case, we do not need to switch from initial bank. The trick I used here is to write 0

in the XA register, so the bank is unchanged but the watchdog is fed anyway.

Fig. 13. CPU Board watchdog

The second watchdog is located on the IO Board. The chip used is still a DS1232 (U210)
but the wiring is a little bit different. Firstly, since there is no code running on that board, the
reset pin of the U210 is not connected to a CPU but to all registers (8-bit D flip-flop) which
drive power transistors.

11

Secondly, there is no reset pushbutton on the IO Board. The PBRESET pin is connected to
the BRESET signal coming directly from the CPU/Sound board. So, if the first DS1231 triggers
a reset signal, it automatically overrides the second watchdog timer and forward the signal
to all IO Board components. However, this is not reciprocal: the IO Board cannot stops the
CPU/Sound Board.

The strobe input of this watchdog is directly connected to the DAV0 signal which is used to
ground the first raw of the lamp matrix. This means that the firmware has to frequently scan
it to keep the IO Board alive. Tricky, but not fully irrelevant since the lights are still blinking
on this kind of arcade machine in order to keep the game catchy.

All of this reset circuitry have to be kept in mind when developing a firmware for this kind
of platform.

Fig. 14. IO Board watchdog

3.3 Firmware example

After many hours spent to reverse engineer the hardware part of this machine, I was finally
able to print LSE on the 7-segment display of the playfield thanks to the code fetched from a
custom flash ROM.

Here is the assembly code of my own basic firmware:

LAMP_ROW EQU $2008

LAMP_AUX EQU $2009

LAMP_COL EQU $200A

BANK_SELECT EQU $3200

;; CPU/Board Watchdog reset

wdr .MACRO

clra

sta BANK_SELECT

.ENDM

;; Dummy delay subroutine

delay .MACRO i

lda i

@l: deca

12

bne @l

.ENDM

;; Entry point

.ORG 0xC000

main: ldx #lamps

clrb

stb LAMP_AUX ;; Clear auxiliary rows

incb ;; Select first row

loop: clra

sta LAMP_ROW

sta LAMP_COL ;; Clear rows and colunms

delay #$1F ;; Dummy delay

lda ,x+ ;; Fetch columns value

sta LAMP_COL ;; Set columns

stb LAMP_ROW ;; Ground selected row

delay #$1F ;; Dummy delay

wdr ;; Watchdog reset

lslb ;; Select next row

bne loop ;; Branch if the first 8 rows are not updated

bcc main ;; Branch if the 9th row is updated

rolb

stb LAMP_AUX ;; Select the 9th row

clrb

bra loop

;; Lamp matrix values

lamps:

DB $01, $00, $00, $00, $00

DB $00, $1C, $B6, $9F, $00

;; Interrupt vector table

.ORG 0xFFFE

reset: DW main

tpasm is needed to assemble the preceding code and turn it into an Intel hex file using the
following commands:

$ tpasm -P 6809 -o intel cpu.hex cpu.s

$ hex2bin ./cpu.hex

$ dd if=/dev/zero of=cpu.rom bs=16K count=32

$ dd if=cpu.bin of=cpu.rom bs=16K seek=31

13

4 Sound board

Abstract. A reverse engineering of a BSMT2000 DSP used on the audio circuit of an old-school
pinball. An overview of the electronic design of this uncommon and discontinued machine will be
presented before focussing on the peculiar conception of its sound board.

Keywords: Reverse Engineering, Hardware, Pinball Machine, Audio, DSP

4.1 Sound board overview

Fig. 15. Block diagram

The audio section consists of a Motorola 68B09E CPU and a BSMT2000 DSP. The sound
playing is controlled by the main CPU which latches data to a dedicated register. The Sound
CPU reads in this buffer commands and handles the interfacing to the BSMT. The DSP can
read audio samples stored in the four dedicated 4MB EEPROMS and mixes it to a background
melody. The data stream outputted by the DSP is then serially shifted into a stereo 16-bit
Digital to Analog Converter (DAC). Finally, the analog signal is filtered and amplified before
being applied to the speakers.

First look at sound CPU wiring

The sound board is entirely driven by the 68B09E CPU. In order to reverse the behaviour of
this circuit, it is a good idea to see how componants are exposed from the point of view of the
sound CPU.

As the main CPU, address decoding is achieved using a PAL16L8 as shown on Figure 16.
Dumping U26 configuration could be performed as explained on section 3.1. However, this trick

14

implies desoldering chip and could be very long to compute. Reversing the code stored on sound
CPU ROM in order to guess the address space is a better idea due to the reasonable size and
the simplicity of the sound card firmware.

Fig. 16. Sound CPU address decoding

Unlike the main CPU ROM, the sound CPU ROM is not banked. Taking into account the
fact that ROM size is 64KB, this memory perfectly fit the address bus width. This would mean
that no spaces are left for other devices on the address space which is not conceivable. Opening
the ROM content on an hexadecimal editor shows that the first 16KB are blank and some valid
6809 instructions can be disassembled above 0x4000. This proves that this memory is actually
not fully mapped to the sound CPU address space and so, some part of it will never be accessible.
We guess that this design has been chosen to simplify relocation of addresses referenced on sound
CPU code since the ROM is identity mapped. According to the disassembled code, the following
lower mapping can be easily deducted:

– 0x0000-0x1FFF: RAM
– 0x2000: Status Register (OSTAT signal)
– 0x2002: Main CPU / Sound CPU Command Register (BIN signal)
– 0x2006: DSP Status (/BLD signal)

Things seem to get a bit more tricky for addresses above 16KB. Useful data can be found
on the ROM from 0x4000 to 0xFFFF such as code, read-only data structures and interrupt
vector. However, it seems that sound CPU stores data on U16 and U11 by writing from 0xA000

to 0xA0FF and on U15 by writing at 0x6000. Since the PAL16L8 is taking BR/W signal used to
indicate the opration type (read/write), it’s perfectly possible to admit a different address space
depending on the CPU operation. It is here used to overlap ROM space and DSP control space
on this relatively restrained address space. The higher mapping can then be defined as:

– During read operation:
• 0x4000 - 0xFFFF: ROM

– During write operation:
• 0x6000: DSP Command (MSB)
• 0xA000-0xA0FF: DSP Command (LSB)

4.2 Interfacing sound board to main CPU

Hardware interface

In order to indicate basic status information for the rest of the board, the sound CPU can write
on a status register defined by two D flip-flop as shown on Figure 17. The first bit, is used
to indicate to the main CPU that audio card successfully finished his initialization phase and
is ready to process some commands. The second bit, mapped on the bit 7 (BD7), is wired to
RESET pin of DSP and is triggered during the initialization or when BSMT is not responding.

15

lda #$80

sta IO_STATUS ;; Reset DSP

cla

anda #1

sta IO_STATUS ;; Indicate to Main CPU that audio card is ready

Fig. 17. Sound CPU status register

The sound calls are made by the main CPU by writing on the U5 register (Figure 18).
In order to inform the sound CPU that data is available, the circuitry defines the BUF-FUL

signal which is set when the main CPU is writing on the command register using the SNDSTB

signal. In the other hand, the sound CPU drives the signal BIN when it needs to read the
instruction. According to code reversed from the sound CPU ROM, the reading is performed
during initialization and during FIRQ handler execution: the sound CPU is periodically checking
the content of the command register. The reading implies the driving of the U5 content on the
sound CPU data bus by grounding the /OE (Output Enable) pin of U5. Moreover, some side
effects are associated with the reading operation: the BUF-FUL and FIRQ signals are cleared
thanks to U8 and U1 latches. This means that command is marked as consumed and a new FIRQ

can be triggered by the next rising edge of the FIRQ clock. Of course, the BUF-FUL is cleared
when the sound board is reset using SNDRST.

Fig. 18. Main CPU / Sound CPU interface

16

Handling CPU commands

As we could expect from the wiring, main CPU commands are fetched when the sound CPU
receives an FIRQ.

The FIRQ handler is quite simple: it increments timers used by the rest of the application
and reads into U5 which clears the FIRQ signal. If the command is different from the previous
one, it is enqueued into a dedicated ring buffer located at 0x0067 and defined as:

struct cmd_ring_buffer {

uint8_t begin;

uint8_t end;

uint8_t data[16];

};

The software’s main loop can now dequeues the command and jump to the corresponding
handler. Each command is defined by a structure which contains a callback index and pointers
to data which are not relevant at this point. Those command descriptors are arranged on two
separate arrays and are defined as:

struct cpu_cmd {

uint8_t callback_idx;

uint8_t unk0;

uint16_t mask;

void **data;

};

As imposed by the circuitry, a command is only a 8-bit word which is quite restrictive.
That’s why the software defines two banks extending the number of commands to 512. The
main CPU can then select a bank by sending 0xFD or 0xFE commands.

It is quite hard to deduce the exact behaviour of each command from this point. A good
approach to go further is to understand how the DSP operates and then extrapolate CPU
commands purposes from it.

4.3 Driving the Digital Signal Processor

Sound CPU/DSP hardware interface

The Figure 19 illustrates the interface between the sound CPU and the DSP. According to
this wiring, a DSP command is composed of an 8-bit address stored in U10 and a 16-bit data
stored in U15 and U16. The writing of a DSP command cannot be atomic since U15 and U16

are connected to the low byte of the sound CPU data bus. So, when sending a DSP instruction.
The first step is to write on U15 using DSP1 signal in order to send command high byte. The
second step is to write the command’s low byte using DSP0 signal. The least significant byte of
data bus and of the address bus will be respectively captured on U16 and U11.

The wiring of U27 shows that an IRQ is sent to the sound CPU when the DSP consumes
the command and so is ready to get a new command. Moreover, /BLD signal seems to indicate
that a DSP instruction is still pending. With this kind of circuitry, we can suppose that DSP
is periodically reading U10 register and then read U16 and U15 registers if U10 is different than
0xFF.

17

Fig. 19. Sound CPU / DSP interface

BSMT2000 wiring

The digital to analog conversion is performed by a Philips TDA1543. This integrated DAC is
one of the first which supports I2S as input format. Figure 20 illustrates the glue logic needed
to convert the data stream generated by the DSP to a correct I2S stream. This is achieved
by using two 8-bit shift registers (U23 and U24). Samples are simply written to this registers
using OUT3 signal and are shifted to the DAC using SCLK 24MHz clock signal generated by the
BSMT2000. WS signal is toggled to latch the right and left channel sound data into the DAC. Its
value is captured during writing operation on shift registers from SA2 (third bit of DSP address
bus).

Fig. 20. DSP / DAC interface

Dumping the BSMT2000 Mask ROM

Although the BSMT2000 is undocumented, it’s well-known that this chip is a masked-ROM
version of the TMS320C15 Texas Instruments’s DSP from 1987. According to the wiring on the
sound board, the pinout is identical to the 40-Pin DIP version of the TI’s DSP. In order to

18

focus the reverse engineering on this particular chip, it’s essential to isolate it from the rest of
the sound board. This way, we avoid all side effects caused by external circuitry which can rise
some unwilling behaviour during the test process. Moreover, it can be useful to provoke some
unusual and controlled events to the chip in order to deduce design details. The best example
is the dumping of the internal program memory.

The chip is clocked at 24 MHz which is actually too high to use a microcontroller to probes or
generates the signals needed to correctly operates. The use of an FPGA is the most convenient
sane way to simulate the sound card which host this DSP. The testbench is based on a DE0-
Nano, an Altera Cyclone IV developpement board.

A first analysis of signals driven on the address and control busses shows that the DSP is
periodically reading on U11 register (IN0) as expected regarding the sound CPU code and the
external circuit.

The original TMS320C15 can be used in two separate modes which define the location of the
used program memory. The current mode is selected using the /MP pin:

– Microcomputer mode (/MP = 1): Fetch instructions from internal program memory
– Microprocessor mode (/MP = 0): Fetch instructions from external program memory

When used on the pinball sound card, the /MP is connected to 5V, selecting the Mask ROM
as program memory. Grounding this pin on the custom testbench allows us to execute basic
TMS320C15 instructions from FPGA internal RAM. This proves that BSMT200’s features reside
on the program stored on Mask ROM: the glue logic seems to be identical to a real TMS320C15.

Of course, there is no programming protocol allowing program memory reading as some
microcontrollers feature. However, this kind of DSP are based on a modified Harvard architec-
ture which means that the program can read itself using specific instructions. In our case, TBLR
instruction is a good candidate.

The trick here is to inject this instruction using external memory in order to read internal
ROM. Although /MP signal is not designed to be toggle during execution, experimentations seem
to show that this pin is simply controlling a multiplexer on data bus selecting the corresponding
program memory and can then be switched during execution. As shown on figure 22, toogling
this pin to MP mode directly after fetching TBLR forces the DSP to switch to mask ROM during
execution of this single instruction allowing the reading from the mask ROM to data memory.
The /MP signal must then be grounding in order to continue fetching from external memory.
An OUT instruction can then be used to read the mask ROM word from data memory and
outputting it to data bus. Although this trick seems to be simple to perform, very tight timing
on /MP signal has to be respected to allow Mask ROM reading.

Fig. 21. BSMT2000 program bus

19

Fig. 22. BSMT2000 dump waveform

This behaviour can be implemented using FPGA. Altera Cyclone IV provides an efficient
way to integrate JTAG-editable memories using M9K cells. As shown on figure 23, this is used
on this design to define external program memory and a shadow mask-ROM used to store words
read from DSP ROM. The program memory content is defined using this Memory Initialization
File (.mif):

WIDTH=16;

DEPTH=64;

ADDRESS_RADIX=HEX;

DATA_RADIX=BIN;

CONTENT BEGIN

0: 0111111000000001; -- LACK 1 ;; ACC <- 1

1: 0101000000000000; -- SACL 0 ;; DATA[0] <- ACC

2: 0110101000000000; -- LT 0 ;; T <- DATA[0]

3: 1000000000000001; -- MPYK 1 ;; P <- 1 x T

4: 0111111110001001; -- ZAC ;; ACC <- 0

5: 0110011100000000; -- TBLR 0 ;; DATA[0] <- PROG[ACC]

6: 0101000000000001; -- SACL 1 ;; DATA[1] <- ACC

7: 0100100100000001; -- OUT 1, 1 ;; IO[1] <- DATA[1]

8: 0100100000000000; -- OUT 0, 0 ;; IO[0] <- DATA[0]

9: 0111111110001111; -- APAC ;; ACC <- ACC + P

A: 1111100100000000; -- B 5

B: 0000000000000101;

END;

Fig. 23. BSMT2000 testbench block diagram

20

Fig. 24. BSMT2000 testbench

BSMT2000 firmware

Before reversing BSMT2000’s firmware, it is necessary to examine the circuitry in order to see
how the DSP can interact with the rest of the board and in particular how it can fetch samples
from voices EEPROMs and how it can output signals to the DAC.

As the DSP is configured in microcontroller mode, it can only communicate with devices
by using IN/OUT instructions. TMS320C1x’s instruction encoding limits the IO space width to 6
bits. The address decoding is performed by a 1-of-8 demultiplexer (74ALS138) and it is quite
simple to deduce this IO mapping:

– IN 0: Sound CPU command address
– IN 1: Sound CPU command data
– IN 2: EEPROM data
– OUT 0: EEPROM address
– OUT 1: EEPROM bank
– OUT 3: Sample out (Left)
– OUT 7: Sample out (Right)

The first thing the DSP firmware do after resetting is to disable interrupts, read into the
first IO port and jump to the corresponding subprogram.

The sound CPU firmware seems to be aware of this behaviour according to this subroutine
which reset the DSP and configure it to mode 1:

OSTAT EQU $2000

DSP1 EQU $6000

DSP0 EQU $A000

init_dsp:

;; Reset DSP

lda #$80

sta OSTAT ;; Set DSPRST

;; Compute command address according to the desired DSP mode

ldb #$FE ;; We need to write the complement of the actual value

21

;; due to U10 inverting output tri-state buffer

;; Here, we select mode 1

ldx #DSP0

abx ;; x <- b + x

;; Select DSP mode by writing 0 at DSP0 + ~mode

clra

sta #DSP1 ;; MSB

sta ,x ;; LSB

;; Start DSP

sta OSTAT ;; Clear DSPRST

rts

The rest of this study will exclusively consider the mode 1. Modes 0, 5, 6 and 7 are similar
to mode 1 and others are for testing purposes.

The mode 1 main loop is basically composed of four stages. The first one is to fetch samples
from the voices EEPROMs. Addressing those memories must be performed by selecting a bank
on U22 and latching an offset on U12 and U13. The bank value is composed of two parts: bits
3 and 4 are used to select one of the four ROMs and bits 0 to 2 select a 64KB bank into the
corresponding chip. In this case, audio samples are simply encoded using 8-bit mono PCM at
8KHz.

The second stage is about decoding the ADPCM channel. Although eleven channels are
working on PCM encoded samples, the twelfth provide an custom ADPCM decoder which
enables voice signal compression. However, in the case of Starship Troopers pinball, voices
EEPROMs only contain PCM samples. We can then suppose that this part of the DSP firmware
is not used and we will detail this part here.

The purpose of the third stage is to mix the different channels into one sample that can
be outputted to the DAC. The following code snippet exhibits the fact that the TMS320C1x is
perfectly designed for this kind of operation:

ZAC ;; ACC <- 0

LT VOLUME1 ;; T <- DATA[VOLUME1]

MPY SAMPLE1 ;; P <- T * DATA[SAMPLE1]

LTA VOLUME2 ;; ACC <- ACC + P; T <- DATA[VOLUME2]

MPY SAMPLE2 ;; P <- T * DATA[SAMPLE2]

...

LTA VOLUME12 ;; ACC <- ACC + P; T <- DATA[VOLUME12]

MPY SAMPLE12 ;; P <- T * DATA[SAMPLE12]

APAC ;; ACC <- ACC + P

SACH 0, TMP ;; DATA[TMP] <- ACC[31:16]

OUT DAC, TMP ;; IO[DAC] <- DATA[TMP]

Fig. 25. Mode 1 block diagram

22

The last stage is dedicated to handle commands from sound CPU. This is suprising how
this part is simplistically designed. The firmware is periodically fetching the command and then
writes its value (IN 1) into arbitrary address (IN 0) without any verification. It means that
the sound CPU can write anywhere in the DSP data memory. Notice that as the writing is
unconditionnal and as the reset value of the U11 register will be read as 0xFF, the last word of
the DSP data memory will perpetually filled with garbage values when no command is pending.

BIOZ fetch ;; Jump to ‘fetch‘ if TST pin is active

NOP ;; Burn CPU cycles

NOP ;;

NOP ;;

B next

fetch: IN 0, 60 ;; DATA[60] <- IO[0]

LAR AR0, 60 ;; AR0 <- DATA[60]

IN 1, * ;; DATA[AR0] <- IO[1]

next: ...

As you might notice, access to command registers is only conditioned by the BIOZ instruction.
It basically jumps if the TST physical of the chip is active. As shown on Figure 26, this pin is
wired to the CLKOUT signal which is clocked at 1/4 CLKIN (main DSP clock) frequency. We can
suppose that this mechanism is setup to limit the number of reading on the command registers
to only one quarter of the main loop iterations. This requires that each iteration consume exactly
the same number of cycles which explains the usage of NOP instructions to burn CPU cycles in
some cases.

Fig. 26. TST pin wiring

The DSP firmware seems to segment the data memory into several ranges which defines
channels configurations and that can be written by the sound CPU:

– 0x0-0xA: Channel playback positions
– 0x16-0x20: Channel rates
– 0x21-0x2B: Sample limits
– 0x2C-0x36: Sample loops
– 0x37-0x41: Sample bank
– 0x42-0x4C: Channel right volume
– 0x4D-0x57: Channel left volume
– 0x58-0x62: Sample data

Although, this kind of command handling may seem risky because of the lack of verification,
the harvard architecture adopted by the TMS320 avoids code rewriting. Moreover, the rest of the
address space is simply not interpreted by embedded code which relativize the consequences of
corrupted data.

23

The DSP firmware is actually quite simple. And even a bit too simple. His only purpose here
is to fetch samples at a given rate and mix them together. But now that we know how the DSP
can be controlled, it could be a good idea to go further into the sound CPU reverse-engineering.

Back to the Sound CPU firmware

The communication with the DSP is ensured by the subroutine located at 0x55B8. This function
waits until DSP status register (0x2006) is clear and then write into DSP command register.

This code is called by several subroutines which are never directly referenced in the rest of
the firmware. Instead, they are arranged on a jump table structure as follow:

#define MAX_CHAN 12

struct dsp_ops {

void (*set_fixed_volume[MAX_CHAN])();

void (*set_rate[MAX_CHAN])();

void (*set_default_rate[MAX_CHAN])();

void (*stop_playing[MAX_CHAN])();

void (*load_pcm_sample[MAX_CHAN])();

void (*op5[MAX_CHAN])();

void (*op6[MAX_CHAN])();

void (*op7[MAX_CHAN])();

void (*op8[MAX_CHAN])();

void (*op9[MAX_CHAN])();

};

This kind of object-oriented pattern is useful to define different behaviours for each channel
exposed as a single operation. For instance, the ADPCM channel volume is not configured the
same way as the other PCM channels.

By using this bottom-up approach it is easier to deduce the behaviour of the audio sequencer
which is really similar to what was generated by old school music trackers. It is implemented
as a simple virtual machine computing audio pattern from a dedicated bytecode. As shown on
Figure 27, patterns are referenced into CPU command definition structure. The third field of
this structure (previously defined on section 4.2) is a 12bit mask defining on which channels the
pattern must be played.

Fig. 27. CPU command definition

The bytecode instruction encoding is quite simple: the first byte is an operation code follow-
ing by a variable number of arguments depending on the operation. For instance, the 05 opcode
is used to load a PCM sample into a channel. As argument, it takes the address of a sample
descriptor structure described as:

24

struct pcm_sample {

uint16_t base;

uint16_t limit;

uint16_t loop_start;

uint8_t unk;

uint8_t bank;

};

A total of 43 instructions are implemented allowing control of playback rate , volume, timing
and bytecode execution. The following listing describes the pattern played on a channel when
the ball hits a target on the playfield. It basically load a PCM sample into the DSP and play at
fixed volume and rate. The main CPU can play this pattern by sending 0xAD command when
the first sound CPU mode is selected.

;; PCM sample description

828B: 00 00 ;; pcm.base

;; sample starts at 0x0000

828D: 47 AC ;; pcm.limit

;; sample finishes at 0x47AC

828F: 47 86 ;; pcm.loop_start

;; sample playing must loop at 0x4786

828F: 3C

828F: 03 ;; pcm.bank

;; sample is located on bank 3 of U17 EEPROM

;; Explosion pattern bytecode

91DE: 05 81 8B ;; load pcm sample described at 0x818B into channel

91E1: 09 01 ;; set channel volume

91E3: 01 1D 01 6D ;; set channel rate, start sample playing

;; and wait 7425 ticks (0x1D01) => 2.53 seconds

91E7: 0F ;; free the channel and stop sample playing

This mechanism may seem overdesigned for playing single PCM sample but it’s really pow-
erful when it is about synthesizing background music or other complex melody which takes too
many spaces when encoded in PCM.

When a command is called by the main CPU, a new instance of the virtual machine is
started for each channels masked by the corresponding command descriptor. Each execution
instance is represented by this structure:

struct track {

struct track *next;

struct track *prev;

void *instruction_pointer; // Address of the next bytecode

// instruction

uint16_t counter; // Used for operation timing

uint16_t last_timestamp;

uint8_t next_instruction;

uint8_t type; // 0: Background track

// 1: Foreground track

uint8_t channel_id;

uint16_t unk0;

25

uint16_t unk1;

uint8_t unk2;

};

Those track structures are arranged into a double-linked list allocated in-place from 0x03C0

to 0x05B8. As no heap-based memory allocator is provided, list nodes are allocated in-place
as represented on Figure 28. Notice that the first node is never allocated and so is used as a
sentinel for the free list.

Fig. 28. Track allocation

The virtual machine scheduler is simply a round-robin which executes only one bytecode
instruction per execution time. As audio patterns need timing between some operations, the
counter field of the track structure is used to retard the execution of the next bytecode instruc-
tion. It is relative to ticks updated by the FIRQ handler.

The callback index contained on command descriptor structure can refer two types of track
playing:

– 0x2: Play foreground track (Remove previous foreground tracks on masked channels)

– 0xB: Play background track (Remove all previous tracks)

Both of them inserts tracks on the playing list with specific pattern bytecode. They only
differ by the way they clean the list before inserting new tracks and how they will be interpreted
by the virtual machine. As a matter of fact, 0xB commands are always provided with 0x7FF

which means that background music is allocated on all PCM channels.

Fig. 29. Track types

As shown on Figure 29, channels can accept at most one track of each type. When two
tracks are sharing the same channel, the foreground one has priority and so the backgound one

26

is muted. The current type of the track played on each channel is reported on an array located
at 0xEA. Of course, to avoid desynchronization between background tracks, pattern bytecode is
still executed but before actually applying operation to the DSP, the virtual machine compares
track type with the one which has the highest priority on the current channel.

uint8_t *channels_types = (void *) 0x00EA;

if (track.type == channels_types[current_channel])

dsp_ops[current_channel]();

Indicated by the 0x0F bytecode instruction, the foreground track stop playing by removing
itself from the track list and unmutes the background track by clearing the corresponding entry
on the 0x00EA array.

4.4 Conclusion

Although this sound card hardware design is simple, it is not simplistic and its severals tricks
used to implement a custom and reliable hardware interfaces between the CPUs is remarkable.

We can be a little bit more suspicious about the BSMT2000’s program which can be seem as
a draft of a real audio chip. In fact, it is hard to imagine the need of a mask ROMed version of
the TMS320C1x for this kind of simple signal mixing.

On the other hand, the sound CPU firmware seems to perfectly use those hardware ressources
in order to get a flexible and fine-grained audio sequencer which is crucial for this kind of arcade
machine. This can be heard in particular during the start of multiball sequence in which 10
patterns are played simultaneously.

In conclusion, this sound system is an outstanding sample of the state of art audio and
electronics engineers from the 80s. However, this pinball was released in 1997. The same result
could have been achieved by using more reliable and cheaper componants. Of course, we can
consider this outdated design as an essential part of pinball culture’s folklore.

References

1. Sega, Starship Troopers Pinball Manual, 1997, http://mirror2.ipdb.org/files/4341/Sega_1997_

Starship_Troopers_Manual.pdf

2. Texas Instruments, 74138 Datasheet, http://www.ti.com/lit/ds/symlink/sn74ls138.pdf
3. Dallas Semiconductor, DS1232 Datasheet, http://datasheets.maximintegrated.com/en/ds/DS1232.pdf
4. Motorola, 68B45 Datasheet, http://www.gbgmv.se/dl/doc/md09/MC6809_DataSheet.pdf
5. Texas Instruments, PAL16L8 Datasheet, http://www.ti.com/lit/gpn/pal16r6am
6. Alliance Memory, A29040C Datasheet, www.farnell.com/datasheets/1770385.pdf
7. Texas Instruments, TMS320C15 Datasheet, http://www.ti.com/lit/gpn/tms320c15

27

http://mirror2.ipdb.org/files/4341/Sega_1997_Starship_Troopers_Manual.pdf
http://mirror2.ipdb.org/files/4341/Sega_1997_Starship_Troopers_Manual.pdf
http://www.ti.com/lit/ds/symlink/sn74ls138.pdf
http://datasheets.maximintegrated.com/en/ds/DS1232.pdf
http://www.gbgmv.se/dl/doc/md09/MC6809_DataSheet.pdf
http://www.ti.com/lit/gpn/pal16r6am
www.farnell.com/datasheets/1770385.pdf
http://www.ti.com/lit/gpn/tms320c15

	Hacking a Sega Whitestar Pinball

